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Abstract 

Potential impacts of climate change to southeastern U.S. pine ecosystems 
are of particular concern to the Department of Defense. The U.S. Forest 
Service-developed Forest Vegetation Simulator – Southern Variant (FVS-
sn) forest growth model can project growth in southeastern U.S. pine 
ecosystems, and it has been modified to incorporate the effects of climate 
change. Stand inventories are typically utilized to parameterize FVS-sn 
growth models, but field-based inventories are cost-prohibitive to collect 
at landscape scales. Therefore, remote sensing protocols were developed to 
parameterize the FVS-sn model. More specifically, a tree-finding model 
was developed to estimate the location and height of individual stems 
using LIDAR data. Estimated stem locations from the tree-finding model 
matched 74% and 98% of field-mapped longleaf and loblolly stems, 
respectively. Using estimates of stem height, height to live crown, localized 
stem density, and crown area for a total of 160 matched stems as predictor 
variables in regression analysis explained 68% and 71% of the variation in 
field-measured diameter at breast height (dbh) for longleaf and loblolly 
stems, respectively. Using this protocol, a landscape-wide map of stem 
locations attributed with species, height, dbh, and crown length could then 
be used to parameterize the FVS-sn model.  

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

1.1 Background 

Several Department of Defense (DoD) policy initiatives are driving re-
quirements for vulnerability assessments, planning, and adaptation strat-
egies to address climate-change impacts on military lands. Climate change 
could alter compliance issues on DoD lands, including management of 
threatened and endangered species (TES) and habitats and impact natural 
resources that sustain the military training mission. Potential impacts of 
climate change to southeastern U.S. pine ecosystems is of particular con-
cern to DoD due to the large number of military installations within this 
ecoregion and multiple natural resource management concerns related to 
these forest types, including their importance for multiple TES. The Forest 
Vegetation Simulator (FVS)-Southern Variant (sn) growth model devel-
oped by the U.S. Forest Service is capable of projecting growth in south-
eastern U.S. pine ecosystems, and modifications have been made by 
ERDC-CERL and by Virginia Polytechnic Institute and State University of 
Blacksburg, Virginia, to incorporate the effects of climate change including 
growth and mortality functions. Ground-based stand inventories are typi-
cally utilized to parameterize FVS-sn growth models, but field-based in-
ventories are cost-prohibitive to collect at landscape scales. Therefore, 
remote sensing protocols utilizing airborne light detection and ranging 
(LIDAR) and multispectral data were developed to parameterize the FVS 
model with spatially explicit, landscape-scale map of stem locations, spe-
cies, height, diameter at breast height (dbh), and crown length. Assess-
ment of landscape-scale impacts of climate change on upland loblolly and 
longleaf pine ecosystems is necessary to inform current management prac-
tices at military installations. 

1.2 Objective 

The objective of this study was to develop remote sensing protocols to pa-
rameterize the FVS forest growth model at a landscape scale for a repre-
sentative, upland loblolly and longleaf pine ecosystem test site.  

1.3 Approach 

Discrete-return LIDAR data was analyzed to produce digital elevation 
models of canopy height surface and bare earth. A model was developed to 
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estimate the location and height of individual stems using both digital ele-
vation models. Estimated stem height was used to estimate dbh for each 
stem. Additional forest structure parameters such as localized stem densi-
ty and crown area were also estimated to improve predictions of dbh for 
estimated stem locations. Multispectral imagery was classified to identify 
species type of individual stems. Landscape-wide estimates of these pa-
rameters for individual stems could then be used to parameterize the FVS 
model to assess the potential effects of climate change on pine ecosystems 
in the southeastern United States. 

1.4 Mode of tech transfer 

Utilizing the protocols described in this report provides the capability to 
parameterize the FVS-sn growth model for the purpose of projecting 
growth in southeastern U.S. pine ecosystems while considering the effects 
of climate change. 
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2 Model background 

FVS-sn is a stem-based model; therefore, to project forest growth with re-
spect to climate-change scenarios across the landscape, a landscape-wide 
stem map is required to parameterize the model. Remotely sensed LIDAR 
data has some potential for parameterizing the FVS model at landscape 
scales (Hudak et al. 2006, 2008; Falkowski et al. 2010). Critical to param-
eterizing the FVS model is developing a method to spatially locate individ-
ual stems and to estimate stem height from LIDAR data. Multiple models 
for identifying individual stems from LIDAR data have been developed 
and tested across a variety of forest types (Persson et al. 2002; Kaartinen 
et al 2012; Leckie et al 2003a; Popescu and Wynne 2004; Packalen et al. 
2008; Hyyppä et al. 2001; McCombs et al. 2003; Breidenbach et al. 2010). 
Similar to most other models of this type, this project utilized a local max-
imum-filtering approach to the canopy height surface with a variable filter 
size within pine-dominated stands with minimal hardwoods. In some 
studies, empirical relationships between field measurements of forest 
structure and LIDAR-derived estimates are stratified by species, age class, 
or site quality because different distributions of LIDAR returns could be 
expected with variation in these parameters, even within monoculture 
stands. Nelson et al. (1988) assessed plots with a mix of hardwoods and 
southern pine species, finding accuracy of biomass and volume estimates 
to be comparable with those where a single southern pine species was 
dominant. That work suggested that stratification was only worthwhile if 
there was a significantly larger deciduous component to the canopy (Nel-
son et al. 1988). 

The dbh measurement is a critical input parameter for modeling forest 
growth, but it cannot be measured directly with LIDAR. Therefore, once 
individual stems are located, allometric equations relating LIDAR-derived 
estimates of stem height, crown size, and relative stem density are typical-
ly used to estimate dbh for individual stems.  

Similar to individual tree detection and height measurement, discrete-
return LIDAR data with high sampling density has been utilized to deline-
ate individual tree crowns and estimate their crown size by using a variety 
of complex approaches including valley-following within the canopy height 
model and region-growing approaches around individual stem locations 
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(Brandtberg et al. 2003; Leckie 2003a; Coops et al. 2004; Lee and Lucas 
2007; Packalen et al. 2008). Object-oriented spectral classification proce-
dures similar to those used in this research to segment multispectral im-
agery have also been utilized to estimate crown size (Leckie et al. 2003b). 
Estimated crown size (in addition to individual stem height) is often used 
as a predictive variable for estimating dbh (Wulder et al. 2000; Bechtold 
2003; Popescu et al 2003; Hyyppä et al. 2001; Persson et al. 2002; Smith 
et al 1992). 
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3 Methods 

Geospatial data utilized to parameterize the landscape FVS model were 
primarily derived from a previous research project for this study site which 
was completed by Mississippi State University (MSU). The MSU study as-
sessed the utility of remotely sensed data for assessing red-cockaded 
woodpecker (RCW) habitat (Evans et al. 2008; Tweddale et. al. 2008). A 
brief summary of the methods utilized in that research is provided in this 
report, and revisions to that method that were incorporated to improve 
dbh estimates are described below.  

3.1 Study site 

The study site for this analysis was the McCain tract, a state-owned con-
servation area located adjacent to Fort Bragg and Camp Mackall, North 
Carolina (Figure 1). The site is located in a critical corridor between two 
subpopulations of RCW in Hoke County, North Carolina, and is repre-
sentative of a southeastern pine forest in the Sandhills region of North 
Carolina. The site is composed of flat land to gently rolling hills and val-
leys, with elevations ranging from sea level near the coast to about 600 ft. 
The primary vegetation types associated with this region include grassland 
and early-successional habitats, pine woodland, and river bottoms. The 
annual mean temperature is about 61.2 °F, with an annual precipitation of 
46.7 in. (Evans et al. 2008). Field samples from plots in nearby tracts 
(Blue Farm and Fort Bragg) were utilized as part of this analysis for as-
sessing diameter estimates derived from stem heights and for assessing 
accuracy of a multispectral image classification. Landscape-wide stem 
mapping and attribution for the purpose of parameterizing the FVS-sn 
growth model was only completed for pine-dominated stands within the 
McCain tract. 
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Figure 1. Location of study site in Hoke County, North Carolina  
(Evans et al. 2008, 13). 

 

3.2 Remotely sensed data 

Airborne LIDAR data was collected by LandAir Mapping* for this site on 
23 July 2005. LIDAR data were acquired at a nominal posting density of 
4.0 points per square meter and recorded as first, only (i.e., only 1 return 
was recorded), second, and third returns in Universal Transverse Mercator 
(UTM: NAD83, GRS80) x, y, and z coordinates. The data were used to 
generate canopy and ground-elevation raster models at a resolution of 
0.5 m for each of the study tracts. The canopy models were created using 
the first and only returns by use of point cloud filtering methods provided 

                                                                 

* LandAir Mapping, Inc. of Peachtree City, Georgia. 
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in Environment for Visualizing Images (ENVI) software.* The ground 
models were generated using a combination of first returns and last re-
turns using point cloud filtering methods provided in LIDAR Analyst 
3.05.02 module of ArcGIS 9.0, as described in Evans et al. (2008). These 
digital surface models of canopy height and bare earth were used to de-
termine locations of trees and their associated heights for evaluation of 
stand structure. 

Airborne color-infrared (CIR) imagery for the study site was acquired 26 
July 2005 by GeoData Airborne at 0.25-m resolution in four spectral 
channels: blue (450 nm), green (550 nm), red (650 nm), and near infrared 
(NIR; 850 nm). The individual frames were ortho-rectified to a ground 
digital elevation model (DEM) and mosaiced for the study site (Evans et al. 
2008). 

3.3 Field data 

Field data were collected in November and December 2006 by MSU for 
training and validation of classifications made with the multi-spectral data 
and analysis of measurements calculated from the LIDAR data. Coordi-
nates for 69 plot centers were randomly generated, and circular plots were 
established at these points with a radius of 11.3 m. These plots were dis-
tributed across the McCain tract and adjacent tracts, and their location 
was recorded with real-time differential global positioning system (GPS). 
Total number of stems and total tree height, dbh, location, height to live 
crown (HLC), crown diameter, and species of each overstory/midstory 
stem were recorded for each plot. Overstory and midstory trees were de-
fined as those trees with dbh greater than 2.54 cm. The plot data were 
used to assess the accuracy of individual stem identification with LIDAR 
and to develop height-diameter relationships for prediction of stem di-
ameters on LIDAR-detected stem locations (Evans et al. 2008). Using a 
forest stand map for the McCain tract, stands that were dominated by 
longleaf and/or loblolly were retained, and other stands (such as those 
dominated by bottomland hardwoods) were eliminated from analysis. A 
total of 22 field plots were ultimately used for this analysis within pine-
dominated stands in the McCain tract. 

                                                                 

* ENVI software is a product of Exelis Visual Information Solutions, www.exelisvis.com.  
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3.4 Image classification 

Prior to development of a stem-mapping procedure, multispectral imagery 
was classified by MSU by using an object-oriented classifier with 
eCognition 4.0* to identify canopy species type. Advantages of using ob-
ject-oriented classifiers for identifying species of individual tree crowns 
have been demonstrated using a variety of high resolution multi-spectral 
data (Leckie et al. 2003b.; Ke et al. 2010). In this project, MSU utilized the 
following object-oriented classification approach as described below. 

“…The segmentation process was interactively guided to utilize scale, 

color, and shape parameters to generate image objects that covered indi-

vidual tree crowns or groups of trees visible in the imagery. Member 

functions to separate shadow objects from non-shadow objects were in-

stituted first followed by member functions to distinguish between vege-

tation objects and nonvegetation objects in the non-shadow areas. 

Member functions to ascertain longleaf, loblolly, hardwood, and other 

vegetation were subsequently applied to the vegetation objects. All multi-

spectral bands and a Normalized Difference Vegetation Index (NDVI) 

(near infrared reflectance –red reflectance/ near infrared reflectance + 

red reflectance) were input into the Classifier..” (Evans et al. 2008). 

Classification accuracy was assessed by using 552 field observations that 
included 109 samples for each of the three tree species, and 75 samples 
each for shadow, bare ground, and low vegetation. Classification accuracy 
was calculated from samples based on commonly reported methods of er-
ror matrix calculations (Congalton and Green 1999; Evans et al. 2008; 
Tweddale et al. 2008). 

3.5 LIDAR-based stem mapping 

All probable canopy trees were identified and mapped by MSU within the 
McCain tract, using the LIDAR-derived surface models of the canopy and 
the bare earth along with modified procedures adopted from those models 
as first described by McCombs et al. (2003). One difference in the meth-
ods utilized by MSU from that described in McCombs et al. (2003) was 
that spectral data were not incorporated into the identification function 
due to spatial registration problems between the LIDAR data and the or-

                                                                 

* Software developed by Trimble Geospatial Imaging of Munich, Germany. Trimble Navigation, Ltd. of 
Westminster, CO is the U.S. distributor (www.ecognition.com). 
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tho-corrected multispectral imagery. The second and most important dif-
ference between the methods is that the new procedure introduced stem 
density and crown size dependent functionalities in tree identification, 
making the new model more adaptable to ranges of conditions over which 
it was applied (Evans et al. 2008).  

The MSU procedure utilized two spatial process models developed in 
Erdas Imagine* which identified and estimated heights of probable tree 
locations in the main canopy of pine-dominated forest stands in the 
McCain tract. The first model utilized the LIDAR-derived canopy and 
bare-ground surface models as input. Generally, the highest pixels (or lo-
cal maximums) in the canopy height surface should correspond to the lo-
cation of probable individual canopy trees. Prior to identification of 
individual stems, a smoothing filter was applied to eliminate “holes” in the 
canopy surface caused by LIDAR points that penetrated the main canopy.  

The model then identified clumps of pixels that could be trees through 
identification of pixels in the canopy height surface that were higher than a 
set percentage of neighboring pixels. Identification of these clumps of pix-
els was determined by using a moving focal rank utility and was a function 
of the size of the search filter utilized. The key to selection of the search 
filter size was to use a size that was similar to the typical size of the cano-
pies to be detected. This selection minimized the inclusion of pixels from 
neighboring canopies when determining the focal rank and decreased er-
rors of omission and commission. The model utilized one of three possible 
radial search filters sizes to identify small, medium, and large crowns. The 
size of these search filters reflected the typical size of small, medium, and 
large canopies identified in the field at representative sites. A relative stem 
density function was utilized to determine which size search filter was uti-
lized as stem density varied spatially. The premise of using a relative stem 
density function to alter the search filter size is that as stem density in-
creases, crown size typically decreases. Therefore, as stem density increas-
es and crown size decreases, a smaller search filter is utilized to identify 
smaller crowns or smaller clumps of pixels that are higher than their 
neighboring pixels. Relative stem density was determined by calculating 
local stem density as a percentage of maximum stem density for the entire 
study area.  

                                                                 

* Erdas Imagine is a suite for geospatial data-authoring software by Hexagon Geospatial, Inc. with head-
quarters in Madison, Alabama (www.hexagongeospatial.com).  
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Using the methods described above, clumps of pixels that were identified 
as higher than a set percentage of neighboring pixels were subjected to a 
sieving operation based off the estimated smallest tree crown; thus, the 
sieving operation eliminated small groups of pixels that were not likely 
trees. The output clumps from this model, as well as the canopy and bare 
ground surface models, were then passed to the second model which ex-
tracted the location and height value of the highest pixel in each clump as 
a tree location (Evans et al. 2008, Tweddale et al. 2008).  

Estimated stem locations derived from analysis of LIDAR data were over-
laid on field-mapped stem locations. LIDAR-derived estimates of stem lo-
cations that matched field-mapped stem locations were identified for 22 
plots in the McCain tract. In addition, commission and omission stems 
were identified to assess the accuracy of the stem-mapping spatial models. 

3.6 Estimation of crown area  

In addition to stem height, HLC, and stem type (hardwood vs. loblolly vs. 
longleaf),the  canopy size, and the localized stem density were also esti-
mated for matching stems. Various crown area delineation programs are 
summarized in the literature. However, all of the programs are proprietary 
and complex. In addition, the multispectral data could not be used to es-
timate crown area because the spectral data was not ortho-corrected to the 
LIDAR-derived canopy surface model which resulted in misregistration 
between the two data layers. Therefore, a simplified two-step approach 
was implemented to estimate crown area.  

First, a mask was applied to the LIDAR-derived canopy surface model to 
eliminate all pixels <7 m above ground, thereby identifying individual tree 
crowns or clumps of crowns and eliminating background low vegetative 
cover and bare ground. The intent was to parameterize the FVS-sn model 
with all stems >4 in. dbh. Using the relationship between height and di-
ameter from field-sampled stems, a 7-m height threshold was determined. 
For open-grown stems that did not overlap adjacent tree canopies, the to-
tal area defined by individual clumps of pixels >7 m in height was used as 
an estimate of crown area (Figure 2).  
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Figure 2. Example of delineation of tree canopies for isolated stems (outlined by red 
polygons) within a circular plot (11.3 m radius), using a mask to eliminate canopy- 

height model pixels <7 m above the ground (ERDC-CERL). 

 

In cases where individual canopies overlapped, the same boundary created 
from the mask was used to define the outer edge of overlapping trees. In 
order to estimate the interior boundary between overlapping stems, 
Thiessen polygons were calculated and intersected with the outer bounda-
ries derived from the mask (Figure 3).  
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Figure 3. Example of delineation of tree canopies for clumped/overlapping stems 
(outlined by red polygons) within a circular plot, using the intersection of a mask to 
eliminate canopy height model pixels <7 m above ground to define outer canopy 

boundaries and Thiessen polygons to define the interior canopy boundaries between 
overlapping canopies (ERDC-CERL). 

 

3.7 Estimation of localized stem density  

Using all probable stem locations identified with the stem-mapping model, 
a moving circular (11.3 m radius) focal sum utility was utilized to count the 
number of stems for each center pixel of the moving kernel, thereby 
providing an estimate of stems per hectare for each pixel in the study area. 
The stem locations identified in the tree finding model were then inter-
sected with the stem density model to attribute each individual stem loca-
tion with a neighboring stem-density attribute.  

3.8 Diameter estimation 

Using 160 LIDAR-identified stem locations across 22 plots that matched 
field-identified stem locations, field-measured dbh was regressed with 
four independent variables that were estimated with LIDAR data: (1) stem 
height, (2) HLC, (3) crown area, and (4) localized stem density.  



ERDC/CERL TR-14-18  13 

4 Results 

4.1 Image classification 

The classification was performed by using an object-oriented classification 
approach using eCognition 4.0 and based on membership functions de-
fined for six classes: (1) longleaf pine, (2) loblolly pine, (3) hardwood, 
(4) low vegetation, (5) shadow, and (6) bare, as described below (Evans et 
al. 2008, 25–26):  

The process of image segmentation was instrumental in isolation of 

groups of pixels that represented majority portions of overstory tree 

crowns. This made it possible for the analyst to train the membership 

functions based on individual trees or groups of trees rather than use the 

classical pixel-based training techniques utilized in other classification 

protocols. For the original pixel size of 0.25m, the following segmenta-

tion parameters seemed to generate the best (visually compared to origi-

nal imagery) representation of tree cover: scale = 12, and shape = 0.1 

(with shape being qualified by values of compactness = 0.5 and smooth-

ness = 0.5). Bands used in segmentation were red, green, and blue. All 

three bands were treated equally given a weight value of 1.0 when con-

sidered for contribution. 

A hierarchical classification scheme that used membership functions was 

a good combination of logical ordering of image elements based on spec-

tral and photo-interpretive properties. Shadow and non-shadow were 

differentiated by use of mean brightness for each image object. This ob-

ject value is the relative brightness (magnitude of reflectance) of all input 

channels taken together. The function used for shadow distinction had a 

cutoff value of 66; object brightness values above this number were con-

sidered non-shadow. The non-shadow class was further subdivided by 

use of a membership function based on the derived NDVI value of 65 to 

separate non-vegetation and vegetation. Green vegetation has high re-

flectance in the near-infrared and low reflectance in the visible wave-

lengths of light, thus making it highly distinguishable from non-

vegetation by use of the NDVI. 

The vegetation class was further subdivided into herbaceous, hardwood, 

and pine classes based on overlapping fuzzy membership functions and 
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finally, the pine class was subdivided into loblolly and longleaf. The re-

sulting classification (Figure 4) provides a detailed spatial representation 

of the vegetative components on the study tracts. The classification was 

then tested for accuracy by use of individual tree locations in the plot da-

ta and other observations for the non-tree classes made throughout the 

study area.  

The overall accuracy after separating the pine cover type into loblolly and 

longleaf was 73.73% (Table 1). The overall kappa statistic was 0.6819 

while individual cover type kappa values ranged from 0.9210 for shadow 

cover type to 0.5085 for hardwood cover (Table 2).  

Figure 4. Classification of all three study tracts plus enlarged portion of part of the 
McCain tract, illustrating the relative detail in the output product: purple = Longleaf 

Pine  (Pinus palustris), green = Loblolly Pine (Pinus taeda), tan = hardwood  
(Evans et al. 2008, 27). 
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Table 1. Classification error matrix for the separation of the all cover types for the 
2005 images of the three study areas: McCain tract and adjacent sites  

(Evans et al. 2008, 27). 

  Reference 
  LL1 Pine 

Lob2 
Pine HW3 Shadow Bare4 Low Veg5 Totals 

Cl
as

si
fie

d 

LL1 99 31 24 2 0 12 168 
Lob2 8 67 22 0 0 0 97 
HW3 2 11 63 2 0 0 78 
Shadow 0 0 0 70 4 12 86 
Bare4 0 0 0 0 60 3 63 
Low Veg5 0 0 0 1 11 48 60 

 Totals 109 109 109 75 75 75 552 
 N = 552 Overall Accuracy: 73.73%   

1 LL = Longleaf Pine – (Pinus palustris), 2 Lob Pine = Loblolly Pine (Pinus taeda), 3 HW = Hardwood, 4 Bare = bare 
ground, and 5 Low Veg = low vegetation. 

 

Table 2. Class accuracies and kappa statistics for the classification error matrix of all 
class cover types for the 2005 images of the McCain tract and adjacent sites  

(Evans et al. 2008, 28). 

 
Ref 
Total 

Class 
Total Correct 

Producer 
Accuracy 

Users’ 
Accuracy Kappa 

LL1 109 168 99 90.83% 58.93% 0.8681 
Lob2 109 97 67 61.47% 69.07% 0.5325 
HW3 109 78 63 57.80% 80.77% 0.5085 
Shadow 75 86 70 93.33% 81.40% 0.9210 
Bare4 75 63 60 80.00% 95.24% 0.7742 
Low Veg5 75 60 48 64.00% 80.00% 0.5961 
   Overall Kappa: 0.6819 

1 LL = Longleaf Pine – (Pinus palustris), 2 Lob Pine = Loblolly Pine (Pinus taeda), 3 HW = Hardwood, 4 Bare = bare 
ground, and 5 Low Veg = low vegetation. 

 

4.2 Matching LIDAR-estimated and field-measured stem locations 

All stem locations identified using the LIDAR-based stem identification 
algorithm were intersected with the image classification in order to attrib-
ute each identified stem with a vegetation type. Using these attributed 
stems locations (244 total stems) across 22 plots on the McCain tract, 160 
LIDAR-identified stem locations were visually matched with correspond-
ing stem-mapped locations for field-measured stems with dbh > 4 in. Re-
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sults from this stem-matching process for 22 plots located on the McCain 
tract are summarized into correctly identified (matched), omission, and 
commission stems (Table 3). Overall, the percentage of LIDAR-derived stem 
locations that were correctly matched with field-mapped stem locations was 
66%. However, this overall percentage included the low percentage of hard-
wood stems that were matched (23%). Using a local maximum-based stem-
finding model (such as the one developed and utilized for this research) typi-
cally does not identify hardwoods with a high degree of accuracy due to their 
crown morphology. However, the objective of this project was to parameterize 
the FVS-sn forest growth model for longleaf and loblolly stem locations, 
which had overall correctly matched percentages of 74% and 98% respective-
ly.  

Table 3. Confusion matrix of LIDAR-based stem identification compared to field-
mapped stems >4 in. dbh on 22 plots on McCain tract (ERDC-CERL).  

Field Data Lidar Data 

 Hardwood Loblolly Longleaf 

Matched 10 49 101 Matched 160 

Omission 34 1 36 Commission 84 

Total 44 50 137 Total 244 

Percentage 
Matched 

23 98 74 Percentage Matched 66 

Percentage 
Omission 

77 2 26 Percentage 
Commission 

34 

 

4.3 Landscape-scale estimation of stem diameter (dbh) for LIDAR-
estimated stem locations  

A total of 160 stems that were correctly identified from the LIDAR stem-
mapping model and validated with field-mapped stem locations were used 
to develop species-specific linear regression models to estimate dbh for all 
LIDAR-derived stem location estimates across the landscape. This allowed 
for landscape-wide parameterization of the FVS-sn forest growth model by 
providing estimates of individual stem diameters. LIDAR-derived esti-
mates of stem height were highly correlated with field-measured stem 
height for matched stems (coefficient of determination R2=.92; root mean 
squared error [RMSE] = 1.79 m). Similarly, field measurements of HLC 
were correlated with field measurements of stem height (R2=0.78; RMSE 
= 2.50 m). Using this relationship, HLC was estimated for LIDAR-
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identified stem locations. However, for the purpose of estimating dbh of 
LIDAR-derived stem locations, stem height and HLC crown were only 
moderately correlated with dbh. Therefore, in addition to LIDAR-
estimated height and HLC crown, two additional predictive variables 
(crown area and localized stem density) were estimated and included to 
improve dbh estimates for individual LIDAR-identified stems. The spe-
cies-specific linear regression models for hardwood, loblolly, and longleaf 
pine are provided below for 160 LIDAR-estimated stem locations that 
were matched to field-mapped stem locations with dbh > 4 in. 

4.3.1 Hardwood 

Adjusted R2 = 0.08 (n=10) 

LIDAR_stem diameter(dbh, inches) = 4.3466842 + (0.2856989*LIDAR_height(meters)) + 
(0.0053212* LIDAR_stem density(stems per_hectare)) – (0.470026* 
LIDAR_height_to_live_crown (meters)) + (0.1292488* LIDAR_crown area (sq. meters)) 

4.3.2 Loblolly 

Adjusted R2 = 0.71 (n=49) 

LIDAR_stem_diameter(dbh, inches) = 0.2860809 + (0.7666321* LIDAR_height(meters)) – 
(0.005573* LIDAR_stem_density(trees_per_hectare)) – (0.312897 
*LIDAR_height_to_live_crown(meters)) + (0.0234666* LIDAR_crown_area(sq. meters)) 

4.3.3 Longleaf 

Adjusted R2 = 0.68 (n=101) 

LIDAR_stem_diameter(dbh, inches) = 2.8894785 + (0.6245536* LIDAR_height(meters)) – 
(0.00671* LIDAR_stem_density(trees per hectare)) – (0.323546 *LIDAR_height_to_ 
live_crown(meters)) + (0.0768556 *LIDAR_crown_area(sq. meters)) 
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5 Conclusions 

The FVS-sn forest growth model developed by the U.S. Forest Service is 
capable of projecting growth in southeastern U.S. pine ecosystems, and 
modifications have been made by ERDC-CERL and Virginia Polytechnic 
Institute and State University to incorporate the effects of climate change 
including growth and mortality functions. Ground-based stand inventories 
are typically utilized to parameterize FVS-sn growth models, but field-
based inventories are cost-prohibitive to collect at landscape scales. The 
methods demonstrated in this research allowed for estimation of stem lo-
cation and diameter of approximately 65,000 individual longleaf and lob-
lolly pines distributed across the McCain tract that otherwise would not be 
feasible. This will allow an assessment of the effects of projected climate 
change on this representative study site, including growth and mortality. It 
is likely that more complex, proprietary software developed for estimating 
radii of individual crowns would have likely improved estimates of crown 
area, which in turn may have resulted in more accurate estimates of stem 
diameter for all stems.  
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